
Suggested Solutions to Midterm Test for MATH4220

March 9, 2017

1. (20 points)

(a) (10 points) Find all the solutions to

ux − 2uy + 2u = 1

(b) (10 points) Solve the problem {
y∂xu+ 3x2y∂yu = 0

u(x = 0, y) = y2

In which region of the xy-plane is the solution uniquely determined?

Solution:

(a) Method 1:Coordinate Method:
Change variables to

x′ = x− 2y, y′ = −2x− y

Hence ux − 2uy + 2u = 5ux′ + 2u = 1. Thus the solution is u(x′, y′) = f(y′)e−
2
5
x′ + 1

2 , with f an
arbitrary function of one variable. Therefore, the general solutions are

u(x, y) =
1

2
+ f(−2x− y)e−

2
5
(x−2y)

where f is an arbitrary function.

Method 2: Geometric Method
The corresponding characteristic curves are

dx

1
=
dy

−2

that is, y = −2x+ C where C is an arbitrary constant.Then

d

dx
u(x,−2x+ C) = ux(x,−2x+ C)− 2u(x,−2x+ C) = −2u(x,−2x+ C) + 1

Hence u(x,−2x+ C) = f(C)e−2x + 1
2 , where f is an arbitrary function. Therefore,

u(x, y) =
1

2
+ f(2x+ y)e−2x

where f is an arbitrary function.

(b) The characteristic curves are
dy

3x2y
=
dx

y

that is, y = x3 + C where C is an arbitrary constant. Then

d

dx
u(x, x3 + C) = ux + 3x2uy = 0
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Hence u(x, x3 + C) = f(C) where f is an arbitrary function. Thus

u(x, y) = f(y − x3)

Besides, the auxiliary condition gives that y2 = u(x = 0, y) = f(y). Hence, the solution is

u(x, y) = (y − x3)2

Note that when y = 0 the equation vanishes, thus the characteristic curves break down when
y = 0, therefore the solution is uniquely determined on {(x, y) : y > 0, y > x3} ∪ {(x, y) : y <
0, y < x3} ∪ {(0, 0)} . (Remark: if the solution is continuous, then u is uniquely determined on
the whole plane by the continuity of u).

2. (20 points)

(a) (4 points) What is the type of the equation

∂2t u+ ∂2xtu− 2∂2xu = 0 ?

(b) (16 points) Solve the Cauchy problem{
∂2t u+ ∂2xtu− 2∂2xu = 2, −∞ < x < +∞, −∞ < t < +∞
u(x, t = 0) = x2, ∂tu(x, t = 0) = 0, −∞ < x < +∞

Solution:

(a) Since a11 = 1, a12 = 1
2 , a22 = −2, then a212 − a11a22 = 9

4 > 0, hence it is hyperbolic.

(b) Let

t = t′, x =
1

2
t′ +

3

2
x′

and v(x′, t′) = u(x, t), then v satisfies ∂2t′v − ∂2x′v = 2,

v(x′, t′ = 0) = (
3

2
x′)2, ∂t′v(x′, t′ = 0) =

3

2
x′,

Thus d’Alembert formula gives that

v(x′, t′) =
1

2

{9

4
(x′ + t′)2 +

9

4
(x′ − t′)2)

}
+

1

2

∫ x′+t′

x′−t′

3

2
ydy +

1

2

∫ t′

0

∫ x′+(t′−s)

x′−(t′−s)
2dyds

=
13

4
t′2 +

9

4
x′2 +

3

2
x′t′

Then

u(x, t) = v(x′, t′) = v(
2

3
x− 1

3
t, t) = 3t2 + x2.

3. (20 points)

(a) (5 points) State the definition of a well-posed PDE problem.

(b) (5 points) Is the following problem well-posed? Why?
d2u

dx2
+
du

dx
= 1, 0 < x < 1

u′(0) = 1, u′(1) = 0
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(c) (10 points) State and prove the uniqueness and continuous dependence of solutions to the
problem 

∂tu = ∂2xu, 0 < x < 1, 0 < t < T, T > 0

∂xu(0, t) = 0, ∂xu(1, t) = 0, t > 0

u(x, t = 0) = φ(x), 0 ≤ x ≤ 1

Solution:

(a) A PDE problem is said to be well-posed if the following three properties are satisfied:

Existence: There exists at least one solution u(x, t) satisfying all these conditions.

Uniqueness: There is at most one solution.

Stability: The unique solution u(x, t) depends in a stable manner on the data of the problem.
This means that if the data are changed a little, the corresponding solution changes only a little.

(b) The problem is not well-posed, since the solution doesn’t exist.

Indeed, the general solution to the ODE d2u
dx2 + du

dx = 1 is u(x) = C1 + C2e
−x + x. Then u′(x) =

−C2e
−x + 1, and boundary condition u′(0) = 1 implies that C2 = 0, however u′(1) = 1 6= 0. Thus

the solution cannot exist.

(c) Uniqueness: Let u1 and u2 be any two solutions to the problem, then u1 = u2.
Continuous dependence on initial data: If u1 and u2 are solutions to the problem with
initial condition φ1(x) and φ2(x) respectively, then

sup
0≤t≤T

∫ 1

0
|u1 − u2|2dx ≤

∫ 1

0
|φ1 − φ2|2dx.

Proof:
(Uniqueness): Let v = u1 − u2, then v satisfies

∂tv = ∂2xv, 0 < x < 1, 0 < t < T, T > 0

∂xv(0, t) = 0, ∂xv(1, t) = 0, t > 0

v(x, t = 0) = 0, 0 ≤ x ≤ 1

Multiplying the both sides of ∂tv = ∂2xv by v and taking intergral from 0 to 1 with respect to x,
then we have ∫ 1

0
∂tvvdx =

∫ 1

0
∂2xvvdx

Then

L.H.S =
d

dt

∫ 1

0

1

2
v2dx

R.H.S = ∂xvv
∣∣∣1
0
−
∫ 1

0
(∂xv)2dx = −

∫ 1

0
(∂xv)2dx ≤ 0

Then, we have for t > 0

0 ≤
∫ 1

0

1

2
v2(x, t)dx ≤

∫ 1

0

1

2
v2(x, 0)dx = 0

By the continuity of v, we have v(x, t) ≡ 0, 0 < x < 1, 0 < t < T . Thus we have shown that
u1(x, t) ≡ u2(x, t) for 0 < x < 1, 0 < t < T .

(Continuous dependence on initial data:) Let v = u1 − u2, then v satisfies
∂tv = ∂2xv, 0 < x < 1, 0 < t < T, T > 0

∂xv(0, t) = 0, ∂xv(1, t) = 0, t > 0

v(x, t = 0) = φ1(x)− φ2(x) =: φ̃(x), 0 ≤ x ≤ 1
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Multiplying the both sides of ∂tv = ∂2xv by v and taking intergral from 0 to 1 with respect to x,
then we have ∫ 1

0
∂tvvdx =

∫ 1

0
∂2xvvdx

Then

L.H.S =
d

dt

∫ 1

0

1

2
v2dx

R.H.S = ∂xvv
∣∣∣1
0
−
∫ 1

0
(∂xv)2dx = −

∫ 1

0
(∂xv)2dx ≤ 0

Then, we have

sup
0≤t≤T

∫ 1

0

1

2
v2(x, t)dx ≤

∫ 1

0

1

2
v2(x, 0)dx =

∫ 1

0

1

2
φ̃2(x)dx

which completes the proof of the continuous dependence on initial data.

4. (20 points)

(a) (15 points) Derive the solution formula for the following initial-boundary value problem
∂tu = ∂2xu, 0 < x < +∞, t > 0

u(x, t = 0) = φ(x) 0 < x < +∞
∂xu(x = 0, t) = 0, t > 0

by the method of reflection (with all the details of the derivation).

(b) (5 points) Let φ(x) = cosx, 0 < x < +∞. Find the maximum value of u(x, t).

Solution:

(a) Use the reflection method, and first consider the following Cauchy Problem:{
∂tv = ∂2xv, 0 < x < +∞, t > 0

v(x, t = 0) = φeven(x) 0 < x < +∞

where φeven(x) is even extension of φ which is given by

φeven(x) =

{
φ(x), if x > 0

φ(−x), if x < 0

Then the unique solution is given by:

v(x, t) =

∫ ∞
−∞

S(x− y, t)φeven(y)dy

And since φeven(x) is even, so is v(x, t) for t > 0,which implies

∂xv(x = 0, t) = 0, t > 0

Set u(x, t) = v(x, t), x > 0 ,then u(x, t) is the unique solution of Neumann Problem on the
half-line. More presicely, x > 0, t > 0

u(x, t) =

∫ ∞
0

S(x− y, t)φ(y)dy +

∫ 0

−∞
S(x− y, t)φ(−y)dy

=

∫ ∞
0

S(x− y, t)φ(y)dy +

∫ ∞
0

S(x+ y, t)φ(y)dy

=
1√

4kπt

∫ ∞
0

[e−
(x−y)2

4kt + e−
(x+y)2

4kt ]φ(y)dy.

Here, k = 1.
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(b) By (a), the solution is given by (k = 1)

u(x, t) =
1√

4kπt

∫ ∞
0

[e−
(x−y)2

4kt + e−
(x+y)2

4kt ] cos ydy

then

|u(x, t)| ≤ 1√
4kπt

∫ ∞
0

[e−
(x−y)2

4kt + e−
(x+y)2

4kt ]| cos y|dy ≤ 1√
4kπt

∫ ∞
0

[e−
(x−y)2

4kt + e−
(x+y)2

4kt ]dy = 1

That is, |u(x, t)| ≤ 1. Note that max0<x<∞ u(x, 0) = max0<x<∞ cosx = 1, which implies that 1
can be attained by u. Hence

max
0<x<∞,t>0

u(x, t) = 1.

5. (20 points)

(a) (10 points) Prove the following generalized maximum principle:
If ∂tu− k∂2xu ≤ 0 on R , [0, l]× [0, T ] with a positive constant k, then

max
R

u(x, t) = max
∂R

u(x, t)

here ∂R = {(x, t) ∈ R| either t = 0, or x = 0, or x = l}.
(b) (10 points) Show if v(x, t) solves the following problem

∂tv = k∂2xv + f(x, t), 0 < x < l, 0 < t < T

v(x, 0) = 0, 0 < x < l

v(0, t) = 0, v(l, t) = 0, 0 ≤ t ≤ T

with a continuous function f on R , [0, l]× [0, T ]. Then

v(x, t) ≤ tmax
R
|f(x, t)|

(Hint, consider u(x, t) = v(x, t)− tmaxR |f(x, t)| and apply the result in (a).)

Solution:

(a) Let v(x, t) = u(x, t) + εx2, then v satisfies

∂tv − k∂2xv = ∂tu− k∂2xu− 2kε < 0

First, claim that v attains its maximum on the parabolic boundary R. Let maxR v(x, t) = M =
v(x0, t0). Suppose on the contrary, then either

i. 0 < x0 < l, 0 < t0 < T .
In this case, vt(x0, t0) = vx(x0, t0) = 0 and vxx(x0, t0) ≤ 0. Thus ∂tv−k∂2xv

∣∣
(x0,t0)

≥ 0, which

is impossible.

ii. 0 < x0 < l, t0 = T .
In this case, vt(x0, t0) ≥ 0, vx(x0, t0) = 0 and vxx(x0, t0) ≤ 0. Thus ∂tv − k∂2xv

∣∣
(x0,t0)

≥ 0,

which is impossible.

Hence
max
R

v(x, t) = max
∂R

v(x, t).

Then for any (x, t) ∈ R,

u(x, t) ≤ u(x, t) + εx2 ≤ max
∂R

v(x, t) ≤ max
∂R

u(x, t) + εl2

Letting ε→ 0 gives u(x, t) ≤ max∂R u(x, t) for any (x, t) ∈ R. Hence maxR u(x, t) = max∂R u(x, t).
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(b) Let u(x, t) = v(x, t)− tmaxR |f(x, t)|, then u satisfies
∂tu− k∂2xu = −max

R
|f(x, t)|+ f(x, t) ≤ 0

u(x, 0) = 0,

u(0, t) = u(l, t) = −tmax
R
|f(x, t)| ≤ 0

Hence the result in (a) implies that for any (x, t) ∈ R,

u(x, t) ≤ max
∂R

u(x, t) = 0

that is, v(x, t) ≤ tmaxR |f(x, t)|.
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