Suggested Solutions to Midterm Test for MATH4220

March 9, 2017

1. (20 points)
(a) (10 points) Find all the solutions to

Uy — 2Uy +2u =1

(b) (10 points) Solve the problem
yOpu + 3:n2y8yu =0
u(z = 0,y) =y

In which region of the zy-plane is the solution uniquely determined?
Solution:

(a) Method 1:Coordinate Method:
Change variables to
¥=x—-2, ¢y =-2x—y

Hence u; — 2uy + 2u = 5uy + 2u = 1. Thus the solution is u(z’,y’) = f(y’)e*%z/ + 3, with f an
arbitrary function of one variable. Therefore, the general solutions are

1
u(e,y) = 5 + f(=2a —y)e s

where f is an arbitrary function.

Method 2: Geometric Method
The corresponding characteristic curves are

dr dy
)
that is, y = —2x + C where C' is an arbitrary constant.Then

diu(a:, -2+ C) =uz(zr, 22+ C) —2u(z, 22+ C) = 2u(z, 2z +C)+1
x

Hence u(x, —2z + C) = f(C)e™2* + %, where f is an arbitrary function. Therefore,

u(r,y) = 5 + F2x +y)e

where f is an arbitrary function.

(b) The characteristic curves are

dy _dj
322y y

that is, y = 23 + C where C is an arbitrary constant. Then
4 3 _ 2, _
7 u(z,z” + C) = uy + 3z"u, =0
x

1



Hence u(z, 23 + C) = f(C) where f is an arbitrary function. Thus

u(z,y) = fly — %)
Besides, the auxiliary condition gives that y? = u(z = 0,y) = f(y). Hence, the solution is
u(z,y) = (y — 2°)?

Note that when y = 0 the equation vanishes, thus the characteristic curves break down when
y = 0, therefore the solution is uniquely determined on {(z,y) : y > 0,y > 23} U {(2,y) : y <
0,y <23} U{(0,0)} . (Remark: if the solution is continuous, then u is uniquely determined on
the whole plane by the continuity of u).

2. (20 points)
(a) (4 points) What is the type of the equation
OFu+ 0%u —202u =107
(b) (16 points) Solve the Cauchy problem

OPu + 0%u — 20%u =2, —o0o <z < 400, —00<t< 400
u(z,t =0) = 2%, du(z,t=0)=0, —oo<z < +00

Solution:
(a) Since a1; = 1,a12 = %, agy = —2, then a?, — ajjax = % > 0, hence it is hyperbolic.
(b) Let
t=t a:zlt’—l—ir'
’ 2 2

and v(a/,t') = u(z,t), then v satisfies
8752/'1) - 85/’1} = 2,
! 4l 3 N2 !4l 3 /
’U(J},t :0) = (ix) ) at/'l)(l',t :O) = §ZC,

Thus d’Alembert formula gives that

1 1 '+t 1 t x/+(tlfs)
v(2' ) = 7{2(:16/ +1)? + %(az’ — t’)2)} + / §ycly + / / 2dyds
x'— 0 x

2 2 / t/ 2 2 ,7(t,78)
13 9 3

— 7t/2 2 2
TR

Then 5
u(x,t) = v’ t') = v(gaj — ~t,t) = 3t* + 2%
3. (20 points)
a) (5 points) State the definition of a well-pose problem.
i S he definiti f 11 d PDE bl

(b) (5 points) Is the following problem well-posed? Why?

P du
dz?  dz
W'(0)=1,4'(1) =0

=1, O<z<l



(c) (10 points) State and prove the uniqueness and continuous dependence of solutions to the

problem
Ou=0%u, 0<z<l, 0<t<T, T>0
0,u(0,t) = 0,0,u(l,t) =0, t>0
u(z,t=0)=¢(z), 0<z<1
Solution:

(a)

A PDE problem is said to be well-posed if the following three properties are satisfied:
Existence: There exists at least one solution u(x,t) satisfying all these conditions.
Uniqueness: There is at most one solution.

Stability: The unique solution u(x,t) depends in a stable manner on the data of the problem.
This means that if the data are changed a little, the corresponding solution changes only a little.
The problem is not well-posed, since the solution doesn’t exist.

Indeed, the general solution to the ODE ?12775 + ‘é—;’ =1lisu(z) = C1 + Cee™® + z. Then v/(x) =
—C2e~*+1, and boundary condition u/(0) = 1 implies that Cy = 0, however /(1) =1 # 0. Thus
the solution cannot exist.

Uniqueness: Let u; and us be any two solutions to the problem, then u; = us.
Continuous dependence on initial data: If u; and us are solutions to the problem with
initial condition ¢4 (z) and ¢o(z) respectively, then

1 1
sup / lup — u2]2dac < / |1 — (bg]zdx.
0 0

0<t<T

Proof:
(Uniqueness): Let v = u; — ug, then v satisfies

Ow=0%, 0<z<l, 0<t<T, T>0
B,0(0,1) = 0,8,0(1,8) =0, t>0
v(r,t=0)=0, 0<zx<1

Multiplying the both sides of d;v = 92v by v and taking intergral from 0 to 1 with respect to z,

then we have . .
/ Oyvvdx :/ D2vvda
0 0

d ('1
L.HS = / —vdx
0

Then
dt 2

1 1 1
R.H.S = dzvv| — / (0pv)%da = —/ (9pv)%dz < 0
0 0

Then, we have for t > 0

11 11
OS/ v2(m,t)dx§/ —v?(z,0)dz = 0
0 2 0 2

By the continuity of v, we have v(z,t) =0, 0 < z < 1,0 < t < T. Thus we have shown that
up(x,t) = ug(z,t) for 0 <z <1, 0<t<T.
(Continuous dependence on initial data:) Let v = u; — ug, then v satisfies

ow=20%, 0<zx<l 0<t<T,T>0
8,0(0,1) = 0,0,0(1,¢) =0, t>0

o(,t = 0) = g1(x) — do(a) = (a), 0<a<1



Multiplying the both sides of d;v = 9?v by v and taking intergral from 0 to 1 with respect to z,

then we have . .
/ Opvvdx :/ D*vvdx
0 0

L.HS = d/ 11)2d56

Then
dt 2

1 1 1
R.H.S = 8;&)1)‘0 - / (Dpv)%da = —/ (0pv)%dz < 0
0 0

1 1 1 1 1 1~
sup / v2(a:,t)dx§/ v2(a:,0)da::/ —¢*(z)dx
o<t<T Jo 2 0 2 0 2

which completes the proof of the continuous dependence on initial data.

Then, we have

4. (20 points)
(a) (15 points) Derive the solution formula for the following initial-boundary value problem

8tu:8§u, O0<z <400, t>0
u(z,t =0)=¢(r) 0<z <400
Ozu(r =0,t) =0, t>0

by the method of reflection (with all the details of the derivation).
(b) (5 points) Let ¢(z) = cosz,0 < x < +o00. Find the maximum value of u(x,t).

Solution:

(a) Use the reflection method, and first consider the following Cauchy Problem:

o =0%, 0<x<+oo, t>0
v(x,t =0) = Peven(r) 0<z <400

where ¢eyen () is even extension of ¢ which is given by

) o), ifx>0
beven(T) = {qﬁ(—x), if 2 <0

Then the unique solution is given by:
o0
v(z,t) 2/ S(@ =y, ) Peven(y)dy
—00
And since @epen () is even, so is v(zx,t) for ¢ > 0,which implies
Oyv(x =0,t) =0,t >0

Set u(x,t) = v(z,t),z > 0 then u(z,t) is the unique solution of Neumann Problem on the
half-line. More presicely, x > 0,¢ > 0

u(x, t) /S:c—y, dy+/ S(x —y,t)p(—y)dy
/ S —y.1) dy+/ S(w +y. () dy

(z—y)2  (aty)?

T ARt He 4kt ]qb(y)dy

_\/4k7rt 0
Here, k£ =1.



(b) By (a), the solution is given by (k = 1)

_(z—y)? (z+1)?

e 4 e~ 4kt | cosydy

u(x,t

= G,

then

1 *_(@—y? (z+y)? 1 ©_@-w? (z+y)>
lu(z,t)] < [e” 3kt + e ke || cosy|dy < [e” 3Rt e ke |dy =1
Vaknt Jo Vakxt Jo

That is, |u(z,t)] < 1. Note that maxg<z<co u(x,0) = maxg<z<oo cosx = 1, which implies that 1
can be attained by u. Hence
max u(z,t) = 1.
0<z<00,t>0
5. (20 points)
(a) (10 points) Prove the following generalized maximum principle:

If Oyu — kO2u < 0 on R = [0,1] x [0, T] with a positive constant k, then

max u(z,t) = max u(x,t)

here OR = {(x,t) € R| either t =0, or x =0, or z = [}.
(b) (10 points) Show if v(z,t) solves the following problem
o = kv + f(x,t), 0<ax<l,0<t<T

v(z,0) =0, 0<xz<l
v(0,t) = 0,v(l,t) =0, 0<t<T

with a continuous function f on R £ [0,] x [0,7]. Then

o(a,t) < x| f (1)

(Hint, consider u(z,t) = v(x,t) — t maxg | f(z,t)| and apply the result in (a).)
Solution:
(a) Let v(z,t) = u(z,t) + ex?, then v satisfies
O — kd*v = dyu — kO?u — 2ke < 0

First, claim that v attains its maximum on the parabolic boundary R. Let maxgv(x,t) = M =
v(zp,to). Suppose on the contrary, then either
LO0<xog<l,0O<ty<T.
In this case, vi(zg, to) = vz(x0,to) = 0 and vy (x0, o) < 0. Thus dpv — k@%v’(%’to) > 0, which
is impossible.
. O<axg<litg="T.
In this case, v¢(xo,t9) > 0,vz(z0,t0) = 0 and vy, (z0,tp) < 0. Thus v — k:a,%v‘(
which is impossible.

>0

xo,to) — 7

Hence
t) = t).
ml%xv(:c, ) né%xv(x, )
Then for any (z,t) € R,

u(z,t) < u(z,t) + ex? < max vz, t) < I%%Xu(l‘,t) + €l?

Letting e — 0 gives u(z,t) < maxgg u(z,t) for any (z,t) € R. Hence maxp u(z,t) = maxgg u(z, t).



(b) Let u(z,t) = v(z,t) — tmaxp |f(x,t)], then u satisfies
O — kd?u = —m}gx\f(:v,t)\ + f(z,t) <0
U(.%', 0) =0,
u(0,8) = u(l,t) = ~tmax|f(z,£)| < 0

Hence the result in (a) implies that for any (x,t) € R,

t) < t)=0
ul, 1) < maxu(z, )

that is, v(x,t) < tmaxpg |f(x,t)|.



